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1. Introduction

A block matrix is a matrix which is partitioned into submatrices, called blocks, such that the
subscripts of the blocks are defined in the same fashion as those for the elements of a matrix [1].

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a11 a54 a55

 =

(
A11 A12

A21 A22

)
.

Let us consider periodic subject that consists of finite number of units with the same properties,
see Figure 1. There are 5 subjects with the same properties which are arranged periodically. The brown
color is used to depict their periodical placement, while the green color in the second and third figure
presents an extra relationship which is acting between neighbouring two subjects.
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Figure 1. Type of periodic subject.
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The matrix encoding the properties of the whole subject can be presented by block matrices. In the
first picture in Figure 1, there are a finite number of units which are placed periodically but there are
no interaction between units as seen. The matrix for the periodic subject will be of the form

A O · · · O
O A · · · O
...

...
. . .

...
O O . . . A

 . (1)

Indeed, the determinant of the matrix is (det A)n.
In the second picture in Figure 1, there are a finite number of units which are placed periodically

and each unit is affected by neighbouring units as seen. The matrix for such a periodic subject is of
the form 

A O · · · O B
O A · · · O B
...

...
. . .

...
...

O O · · · A B
C C · · · C nD

 . (2)

In [2], the authors showed that the determinant of such a matrix is given by

nr(det(A))n−1 det

(
A B
C D

)
, where D is an r× r matrix.

On the other hand, in the last picture in Figure 1, there are a finite number of units which are
placed periodically and each unit is affected by the periodic structure itself (rather than neighbouring
units). The matrix for such a periodic object can be presented by a matrix of the form

A O O · · · O −B −B · · · −B
O A O · · · O B O · · · O
O O A · · · O O B · · · O
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A O O · · · B
−C C O · · · O 2D D · · · D
−C O C · · · O D 2D · · · D

...
...

...
. . .

...
...

...
. . .

...
−C O O · · · C D D · · · 2D


(3)

or a matrix of the form

A O O · · · O −B −B · · · −B
O A O · · · O B O · · · O
O O A · · · O O B · · · O
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A O O · · · B
−C C O · · · O D + E D · · · D
−C O C · · · O E D + E · · · D

...
...

...
. . .

...
...

...
. . .

...
−C O O · · · C E E · · · D + E


. (4)

The applications in the last section will be helpful to understand the difference between (3) and (4).
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In this paper, we will show that the determinant of the matrix (3) is

nr det(A)

{
det

(
A B
C D

)}n−1

,

while the determinant of the matrix (4) is

det(A)
n

∑
k=1

{
det

(
A B
C D

)}n−k {
det

(
A B
C E

)}k−1

.

As an application, we will find the Alexander polynomial and the determinant of a periodic link
(Theorems 4–7). Notice that, if a matrix M is singular, then we define (det(M))0 = 1.

2. Determinants

In this section, we introduce formulae for the determinants of block matrices (3) and (4).

Theorem 1. Let A, B, C, and D be matrices of size m× m, m× r, r × m and r × r, respectively and O the
zero-matrix. Then

det



A O O · · · O −B −B · · · −B
O A O · · · O B O · · · O
O O A · · · O O B · · · O
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A O O · · · B
−C C O · · · O 2D D · · · D
−C O C · · · O D 2D · · · D

...
...

...
. . .

...
...

...
. . .

...
−C O O · · · C D D · · · 2D


= nr det(A)

{
det

(
A B
C D

)}n−1
,

where the number of A’s in the diagonal is n and the number of (2D)’s in the diagonal is n− 1 (n ≥ 2).

Proof. The identity can be obtained by elementary determinant calculation. We put the detailed proof
at Appendix A for the convenience of readers.

Theorem 2. Let A, B, C, D and E be matrices of size m×m, m× 1, 1×m, 1× 1 and 1× 1, respectively and
O the zero-matrix. Then

det



A O O · · · O −B −B · · · −B
O A O · · · O B O · · · O
O O A · · · O O B · · · O
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A O O · · · B
−C C O · · · O D + E D · · · D
−C O C · · · O E D + E · · · D

...
...

...
. . .

...
...

...
. . .

...
−C O O · · · C E E · · · D + E



= det(A)
n

∑
k=1

{
det

(
A B
C D

)}n−k {
det

(
A B
C E

)}k−1

,

where the number of A’s in the diagonal is n and the number of D + E’s in the diagonal is n− 1(n ≥ 2).
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Proof.

LHS =

(1)
det



A O O · · · O −B −B · · · −B
O A O · · · O 2B B · · · B
O O A · · · O B 2B · · · B
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A B B · · · 2B
O C O · · · O D + E D · · · D
O O C · · · O E D + E · · · D
...

...
...

. . .
...

...
...

. . .
...

O O O · · · C E E · · · D + E



=

(2)
det(A)

n

∑
k=1

{
det

(
A B
C D

)}n−k {
det

(
A B
C E

)}k−1

.

The identity can be obtained by elementary determinant calculation. The identity (1) comes by
adding the kth column to the first column and then, adding the (−1)(the first row) to the kth row for
any k = 2, 3, · · · , n, while the identity (2) can be found in Appendix A.

Remark 1. If A is invertible, then Theorems 1 and 2 can be proved by using the Schur complement. We put
those proofs at Appendix B. The Authors appreciate such valuable comments given by our reviewer.

3. Application: Alexander Polynomials and the Determinants of Periodic Links

We start this section by reviewing results of knot theory which are related with the calculation of
the Alexander polynomial and the determinant of a link, see [2–4] in detail.

A knot K is an embedding K : S1 ↪→ R3 of S1 into the 3-space R3. A link is a finite disjoint union
of knots: L = K1 ∪ · · · ∪ Kn. Each knot Ki is called a component of the link L. Two links L and L′

are equivalent (or ambient isotopic) if one can be transformed into the other via a deformation of R3

upon itself. A diagram of a link L is a regular projection image p(L) from the link L into R2 such that
the over-path and the under-path at each double points of p(L) are distinguished. There are examples
of a knot and a link in Figure 2. Two link diagrams are equivalent if one can be transformed into another
by a finite sequence of Reidemeister moves in Figure 3.

Figure 2. A trefoil knot diagram and a Hopf link diagram.

//oo I //oo I I //oo I I I

Figure 3. Reidemeister moves.

A Seifert surface for an oriented link L in S3 is a connected compact oriented surface contained in
S3 which has L as its boundary. The following Seifert algorithm is one way to get a Seifert surface from
a diagram D of L.

Let D be a diagram of an oriented link L. In a small neighborhood of each crossing, make the
following local change to the diagram;
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Delete the crossing and reconnect the loose ends in the only way compatible with the
orientation.

When this has been done at every crossing, the diagram becomes a set of disjoint simple loops in
the plane. It is a diagram with no crossings. These loops are called Seifert circles. By attaching a disc to
each Seifert circle and by connecting a half-twisted band at the place of each crossing of D according to
the crossing sign, we get a Seifert surface F for L.

The Seifert graph Γ of F is constructed as follows;

Associate a vertex with each Seifert circle and connect two vertices with an edge if their
Seifert circles are connected by a twisted band.

Note that the Seifert graph Γ is planar, and that if D is connected, so does Γ. Since Γ is a
deformation retract of a Seifert surface F, their homology groups are isomorphic: H1(F) ∼= H1(Γ).
Let T be a spanning tree for Γ. For each edge e ∈ E(Γ) \ E(T), T ∪ {e} contains the unique simple
closed circuit Te which represents an 1-cycle in H1(F). The set {Te | e ∈ E(Γ) \ E(T)} of these 1-cycles
is a homology basis for F. For such a circuit Te, let T+

e denote the circuit in S3 obtained by lifting
slightly along the positive normal direction of F. For E(Γ) \ E(T) = {e1, · · · , en}, the linking number
between Tei and T+

ej
is defined by

lk(Tei , T+
ej
) =

1
2 ∑

crossing c∈Tei∩T+
ej

sign(c).

A Seifert matrix of L associated to F is the n× n matrix M = (mij) defined by

mij = lk(Tei , T+
ej
),

where E(Γ) \ E(T) = {e1, · · · , en}. A Seifert matrix of L depends on the Seifert surface F and the choice
of generators of H1(F).

Let M be any Seifert matrix for an oriented link L. The Alexander polynomial ∆L(t) ∈ Z[t, t−1] and
determinant of L are defined by

∆L(t)
.
= det(t

1
2 M− t−

1
2 MT)

det(L) = |det(M + MT)|

For details, see [4,5].
For e, f ∈ E(Γ)\E(T), Te ∩ Tf is either an empty set, one vertex or a simple path in the spanning

tree T. If Te ∩ Tf is a simple path, v0 and v1 are two ends of Te ∩ Tf , we may assume that the
neighborhood of v0 looks like Figure 4. In other words, the cyclic order of edges incident to v0 is given
by Te ∩ Tf , Te, Tf with respect to the positive normal direction of the Seifert surface. Also we may
assume that the directions of Te and Tf are given so that v0 is the starting point of Te ∩ Tf . For, if the
direction is reversed, one can change the direction to adapt to our setting so that the resulting linking
number changes its sign.

v
0

T
e

T
f

T
e
∩T

f

positive direction

Figure 4. Te ∩ Tf .
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In [6], the authors showed the following proposition which is the key tool to calculate the linking
numbers for Seifert matrix of a link.

The Alexander polynomial of a knot or a link is the first polynomial of the knot theory [7].
The polynomial was reformulate and derived in several different ways over the next 50 years.
Perhaps the most satisfying of these is from the homology of the branched cyclic covering space
of the knot complement. This reveals the underlying geometry and generalizes to higher dimensions
and to a multi-variable version for links. See [4]. Many researchers reformulate the Alexander
polynomial as a state sum, Kauffman [8] and Conway [9], etc. Recently, many authors interested in the
twisted Alexander polynomial and Knot Floer homology, it provides geometric information of a knot
or a link, see [10–13]. The Alexander polynomial is categorified by Knot Floer homology, see [14,15].
Furthermore, since Alexander polynomial is a topological content of quantum invariants, Alexander
polynomial is one of the most important invarinat of knot theory, see [16].

Proposition 1 ([6]). For e, f ∈ E(Γ)\E(T), let p and q denote the numbers of edges in Te ∩ Tf corresponding
to positive crossings and negative crossings, respectively. Suppose that the local shape of Te ∩ Tf in F looks like
Figure 4. Then,

lk(Te, T+
f ) =

{
− 1

2 (p− q), if p + q is even;
− 1

2 (p− q + 1), if p + q is odd, and

lk(Tf , T+
e ) =

{
− 1

2 (p− q), if p + q is even;
− 1

2 (p− q− 1), if p + q is odd.

A link L in the 3-sphere S3 is called a periodic link of order n (n ≥ 2) if there is an orientation
preserving auto-homeomorphism ψ of S3 which satisfies the following conditions; ψ(L) = L, Fix(ψ),
the fixed-point set of ψ, is a 1-sphere disjoint from L and ψ is of period n. The link L/ψ = L∗ is called
the factor link of the periodic link L. We denote Fix(ψ)/ψ by F∗. One of an important concern of knot
theory is to find the relationship between periodic links and their factor links, see [17,18]. In 2011,
the authors expressed the Seifert matrix of a periodic link which is presented as the closure of a 4-tangle
with some extra restrictions, in terms of the Seifert matrix of quotient link in [2].

Let I be a closed interval [a, b] and k a positive integer. Fix k points in the upper plane I2 × {b} of
the cube I3 and the corresponding k points in the lower plane I2 × {a}. A (k, k)-tangle is obtained by
embedding oriented curves and some oriented circles in I3 so that the end points of the curves are
the fixed 2k-points. By a 2k-tangle, we mean a (k, k)-tangle. Let T be a 2k-tangle. For an integer n ≥ 2,
let Tn denote the 2k-tangle obtained by stacking T n-times. The denominator D(T) of T is defined by
connecting the top ends of T to the bottom ends by parallel lines, see Figure 5. In particular, if T is
a 4-tangle, then the numerator N(T) of T is defined as the last picture in Figure 5. Clearly, D(Tn) is a
periodic link of order n whose factor link is D(T). If an orientation is given on D(T), then it induces
an orientation of D(Tn). Notice that every (oriented) periodic link can be constructed in this way.

Let T be a 4-tangle and let D(T) denote the denominator of T which is obtained by connecting the
top ends and the bottom ends of T by parallel curves α and β. Suppose that D(T) is oriented. Note that
the induced orientation at α and β are either opposite or parallel, see Figure 6.

If the induced orientation at α and β are parallel, then α and β are contained in different Seifert
circles of D(T). Hence we have the following three cases.

Case I: The orientations at the end points of the curves in T are opposite and the two outer arcs α

and β of D(T) are contained in the same Seifert circle, see the first picture in Figure 7.
Case II: The orientations at the end points of the curves in T are opposite and the two outer arcs of

D(T) are contained in different Seifert circles, see the second picture in Figure 7.
Case III: The orientations at the end points of the curves in T are parallel, see the last picture in

Figure 7.
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T

 T

 T

 T

 T T

}k

} n

Tn

D(T) N(T),  k=2

Figure 5. (k, k)-tangle, denominator and numerator.

      opposite    parallel

TT

Figure 6. Orientation of a tangle.

T TTF
*

F
*

F
*

Figure 7. Three types of denominator D(T).

3.1. Periodic Links with Periodicity in Case I

In Case I and Case II, the numerator N(T) of T is well-defined as an oriented link. In particular,
in Case I, the linking number between any Seifert circle of D(T) and the periodic axis F∗ is always 0,
which is equivalent to that lk(C, F∗) = 0 for any Seifert circle C of D(T). For Case I, the authors
gave the following criteria for Alexander polynomial of the periodic link D(Tn) by using those of the
denominator D(T) and the numerator N(T) of a 4-tangle T.

Proposition 2 ([2]). Let L be a periodic link of order n with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T. If lk(C, F∗) = 0 for any Seifert circle C of D(T), then the Alexander polynomials
of L, L∗ and N(T) are related as follows;

∆L(t) = n∆L∗(t)(∆N(T)(t))
n−1.

Indeed, to get the result, the authors showed the following proposition and then applied the
determinant formula for the matrix (1).

Proposition 3. If T is a 4-tangle in Case I, then there exist Seifert matrices MD(T), MN(T), and MD(Tn)

of D(T), N(T), and D(Tn), respectively, such that
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MD(T) =

(
MN(T) B

C D

)
and

MD(Tn) =


MN(T) O · · · O B

O MN(T) · · · O B
...

...
. . .

...
...

O O · · · MN(T) B
C C · · · C nD

 ,

where B is a column vector, C is a row vector, O is the zero-matrix and the number of block MN(T) is n.

3.2. Periodic Links with Periodicity in Case II

In Case II, there is a Seifert circle C of D(T) such that lk(C, F∗) 6= 0. In fact lk(C1, F∗) =

−lk(C2, F∗)(= ±1) where C1 and C2 denote Seifert circles in D(T) containing α and β, respectively.

Lemma 1. If T is a 4-tangle in Case II, then there exist Seifert matrices MD(T), MN(T) and MD(Tn)

of D(T), N(T) and D(Tn), respectively, such that

MN(T) =

(
MD(T) B

C D

)
and

MD(Tn) =



MD(T) O O · · · O −B −B · · · −B
O MD(T) O · · · O B O · · · O
O O MD(T) · · · O O B · · · O
...

...
...

. . .
...

...
...

...
...

O O O · · · MD(T) O O · · · B
−C C O · · · O 2D D · · · D
−C O C · · · O D 2D · · · D

...
...

...
. . .

...
...

...
...

...
−C O O · · · C D D · · · 2D


,

where B is a row vector, C is a column vector, O is the zero-matrix, the number of block MD(T) is n, and the
number of block 2D is n− 1 (n ≥ 2).

Proof. Suppose that the orientations at the end points of the curves in T are opposite and the two
outer arcs of D(T) are contained in different Seifert circles. Without loss of generality, we may assume
that T looks like T′ as seen in Figure 8 that obtained from T by applying the Reidemeister move II
between the left two outer curves and the right two outer curves of T, respectively. Note that D(T′),
N(T′) and D(T′n) are ambient isotopic to D(T), N(T) and D(Tn), respectively.

T
~
Ω
2

T

T

Figure 8. Applying Reidemeister Move II.

The Seifert graphs ΓD(T′) and ΓN(T′) of D(T′) and N(T′) are of the form in Figure 9, in which
spanning trees τD(T′) and τN(T′) of ΓD(T′) and ΓN(T′) are given by dotted edges in Figure 9. Notice that
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ΓN(T′) is obtained from ΓD(T′) by identifying the left vertex u to the right vertex v in ΓD(T′) as shown
in the right picture in Figure 9. If E(ΓD(T′)) \ E(τD(T′)) = {e1, · · · , ek}, then E(ΓN(T′)) \ E(τN(T′)) =

{e1, · · · , ek} ∪ {d}, where d is the new edge of ΓD(T′) as shown in Figure 9.

T

D(T’) N(T’)

T

d

u v

Figure 9. Seifert graphs for D(T) and N(T).

The corresponding Seifert matrix MD(T′) = [mij(D(T′))] of D(T′) is a k × k matrix, while the
Seifert matrix MN(T′) = [mij(N(T′))] of N(T′) is a (k + 1)× (k + 1) matrix. Furthermore, the linking
number between Tei and T+

ej
in N(T′) is equal to the linking number between Tei and T+

ej
in D(T′)

for all i, j = 1, 2, · · · , k, by Proposition 1. Indeed, mij(D(T′)) = mij(N(T′)) for all i, j = 1, 2, · · · , k.
Hence the Seifert matrix MN(T′) of N(T′) is given by

MN(T′) =

(
MD(T′) B

C D

)
,

where B = (lk(Te1 , T+
d ), · · · , lk(Tek , T+

d ))T , C = (lk(Td, T+
e1
), · · · , lk(Td, T+

ek
)) and D = lk(Td, T+

d ).
From now on, we will try to find a Seifert matrix MD(T′n) of D(T′n). The Seifert graph ΓD(T′n)

of D(T′n) consists of n copies of ΓD(T′) whose final vertices u and v are used to connect the copies of
ΓD(T′) as shown in Figure 10. Let dp be the corresponding pth copy of d for all p = 1, 2, · · · , n in ΓD(T′n).
By removing (n− 1)-copies of the edge d, e.g., d2, d3, · · · , dn in Figure 10, we get a spanning tree τD(T′n)
of ΓD(T′n). Indeed,

E(ΓD(T′n)) \ E(τ(D(T′n))) = ∪n
p=1{e

p
1 , · · · , ep

k } ∪ {d2, d3, · · · , dn},

where {ep
1 , · · · , ep

k } is the corresponding pth copy of {e1, · · · , ek}.

D(T 
n
)

T T TT

d
1d

2

d
n

d
4

d
3

Figure 10. Seifert graph for D(Tn).
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Since the linking number between Tep
i

and T+
ep

j
in D(T′n) is equal to the linking number between

Tei and T+
ej

in D(T′) for all i, j = 1, 2, · · · , k and p = 1, · · · , n, we have mip jp(D(T′n)) = mij(D(T′)),
where mip jp(D(T′n)) = lk(Tep

i
, T+

ep
j
). If p 6= q, since Tep

i
and Teq

j
do not intersect, mip jq(D(T′n)) = 0 for

all i, j = 1, 2, · · · , k, by Proposition 1. Hence,

mip jq(D(T′n)) =

{
mij(D(T′)), if p = q;
0, if p 6= q.

On the other hand, since Tdp lies in the 1st copy and pth copy of Tei ∩ Tdp , we have lk(Te1
i
, T+

dp
) =

−lk(Tei , T+
d ) = −B, lk(Tdp , T+

e1
i
) = −lk(Td, T+

ei
) = −C, lk(Tep

i
, T+

dp
) = lk(Tei , T+

d ) = B and

lk(Tdp , T+
ep

i
) = lk(Td, T+

ei
) = C for all p = 2, 3, · · · , n. For p 6= q and p, q = 2, 3, · · · , n, lk(Tep

i
, T+

dq
) = 0

and lk(Tdq , T+
ep

i
) = 0 since Tep

i
and Tdq do not intersect in D(T′n).

Since T is connected, the generator Tdp runs through 2 copies, in each of which the self linking
number of Td is equal to D for all p = 2, 3, · · · , n. Furthermore, since the orientations at the end
points of the curves in T are opposite, D is even. Hence, lk(Tdp , T+

dp
) = 2 · lk(Td, T+

d ) = 2D for all

p = 2, 3, · · · , n, by Proposition 1. For all p, q = 2, 3, · · · , n and p 6= q, lk(Tdp , T+
dq
) = lk(Td, T+

d ) = D.
Because generators Tdp and Tdq meet in the just 1st copy.

Hence by using Theorem 1, we get the following result.

Theorem 3. Let L be a periodic link of order n (n ≥ 2) with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T in Case II. Then the Alexander polynomials of D(Tn), D(T) and N(T) are related
as follows;

∆L(t) = n∆L∗(t)(∆N(T)(t))
n−1.

Proof. By the definition of the Alexander polynomial of a link and by Lemma 1, we have

∆N(T)(t) = det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )D

)
,

∆D(Tn)(t) = n det(t
1
2 MD(T) − t−

1
2 MD(T)

T)

×det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )D

)n−1

= n∆D(T)(t)(∆N(T)(t))
n−1.

Since the result in Theorem 3 (Case II) equals that in Proposition 2 (Case I), we can summarize
them as

Theorem 4. Let L be a periodic link of order n (n ≥ 2) with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T whose numerator N(T) is defined. Then the Alexander polynomials of L, L∗ and
N(T) are related as follows;

∆L(t) = n∆L∗(t)(∆N(T)(t))
n−1.

Theorem 5. Let L be a periodic link of order n (n ≥ 2) with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T whose numerator N(T) is defined. Then the determinants of L, L∗ and N(T) are
related as follows;

det(L) = n det(L∗){det(N(T))}n−1.
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Proof. Note that det(L) = |∆L(−1)| for any oriented link L. By Theorem 4, we have

det D(Tn) = |∆D(Tn)(−1)|

= |n∆D(T)(−1){∆N(T)(−1)}n−1|

= n|∆D(T)(−1)||{∆N(T)(−1)}|n−1

= n det(D(T)){det N(T)}n−1.

Example 1. Consider the oriented 4-tangle T in Figure 11, which is a 4-tangle in Case II.

D(T)T N(T) D(T  )
3

Figure 11. Example for Case II.

The Seifert matrices of N(T) and D(T) are given by

MD(T) =

(
−1 0 0

0 −1 −1
0 0 −2

)
and MN(T) =

 −1 0 0 0
0 −1 −1 0
0 0 −2 −1
−1 −1 −1 −2

,

while

MD(T3) =



−1 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 1 1
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 −2 0 −1
1 1 1 −1 −1 −1 0 0 0 −4 −2
1 1 1 0 0 0 −1 −1 −1 −2 −4


.

By the direct calculation, one can see that the Alexander polynomials of D(T) and N(T) are

∆D(T)(t) = −2t
3
2 + 5t

1
2 − 5t−

1
2 + 2t−

3
2 and

∆N(T)(t) = 4t2 − 8t + 9− 8t−1 + 4t−2.

By using Theorem 3, we get the Alexander polynomial of D(T3);

∆D(T3)(t) = 3(−2t
3
2 + 5t

1
2 − 5t−

1
2 + 2t−

3
2 )(4t2 − 8t + 9− 8t−1 + 4t−2)2

= − 96t
11
2 + 624t

9
2 − 2016t

7
2 + 4344t

5
2 − 6990t

3
2 + 8799t

1
2 − 8799t−

1
2

+ 6990t−
3
2 − 4344t

5
2 + 2016t−

7
2 − 624t−

9
2 + 96t−

11
2 .

Finally, one can get det(D(T3)) = 3(14)(33)2 = 45738 by Theorem 5 because det(D(T)) = 14 and
det(N(T)) = 33.
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3.3. Periodic Links with Periodicity in Case III

In Case III, recall that the orientation of T is given as the left of Figure 12 so that there exist exactly
two Seifert circles C1 and C2 in D(T) such that lk(C1, F∗) = lk(C2, F∗)(= ±1). Note that the orientation
of T cannot be extended to an orientation of N(T). Define T+ and T− by adding a positive crossing
and a negative crossing at the bottom of T respectively, as shown in Figure 12.

T

For

, .

  T+ 

 
   T-

T

+

T

-

Figure 12. T+ and T−.

Lemma 2. If T is a 4-tangle in Case III, then there exist Seifert matrices MD(T), MD(T+), MD(T−) and MD(Tn)

of D(T), D(T+), D(T−) and D(Tn), respectively, such that

MD(T+) =

(
MD(T) B

C D

)
,

MD(T−) =

(
MD(T) B

C E

)
and

MD(Tn) =



MD(T) O O · · · O −B −B · · · −B
O MD(T) O · · · O B O · · · O
O O MD(T) · · · O O B · · · O
...

...
...

. . .
...

...
...

. . .
...

O O O · · · MD(T) O O · · · B
−C C O · · · O D + E D · · · D
−C O C · · · O E D + E · · · D

...
...

...
. . .

...
...

...
. . .

...
−C O O · · · C E E · · · D + E


,

where B is a row vector, C is a column vector, O is the zero-matrix, E = D + 1, the number of block MD(T) is n
and the number of block (D + E) is n− 1.

Proof. Since the process of the proof is similar to that of Theorem 3, we will give briefly sketch of
the proof.

The Seifert graphs ΓD(T′), ΓD(T′+)
and ΓD(T′−)

of D(T′), D(T′+) and D(T′−) are of the form in
Figure 13, in which spanning trees τD(T′), τD(T′+)

and τD(T′−)
of ΓD(T′) ΓD(T′+)

and ΓD(T′−)
are given by

dotted edges in Figure 13.
The Seifert graph ΓD(T′n) of D(T′n) consists of n copies of ΓD(T′) whose the end vertices u and v

are used to connect the copies of ΓD(T′) as shown in Figure 14. Let dp be the corresponding pth copy of
d for all p = 1, 2, · · · , n in D(T′n). Notice that by the construction of D(T′n), d and d∗ correspond to the
same edge in D(T′n), where d and d∗ were new edges in Figure 13. By removing (n− 1)-copies of the
edge d (or d∗) in ΓD(T′), e.g., d2, d3, · · · , dn in Figure 14, we get a spanning tree τD(T′n) of D(T′n).
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T

D(T’ )

T

d

D(T’
+
)

 

 

D(T’
- 
)

 

 

T

d
* 

 

u v

u

u

v

v

Figure 13. Seifert graphs of D(T′), D(T′+) and D(T′−).

D(T’
 
)

T T TT

d
1d

2

d
n

d
4

d
3

n

Figure 14. Seifert graph of D(T′n).

By using the determinant formula in Theorem 2, we get the following theorem.

Theorem 6. Let L be a periodic link of order n (n ≥ 2) with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T in Case III. Then the Alexander polynomials of L, L∗, D(T+) and D(T−) are
related as follows;

∆L(t) = ∆L∗(t)
n

∑
k=1

(∆D(T+)(t))
n−k(∆D(T−)(t))

k−1.

Proof. By the definition of the Alexander polynomial of a link and by Lemma 2, we have

∆D(T+)(t) = det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )D

)
,

∆D(T−)(t) = det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )E

)
,
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∆D(Tn)(t) = det(t
1
2 MD(T) − t−

1
2 MD(T)

T)

×
n

∑
k=1

[

{
det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )D

)}n−k

×
{

det

(
t

1
2 MD(T) − t−

1
2 MD(T)

T t
1
2 B− t−

1
2 CT

t
1
2 C− t−

1
2 BT (t

1
2 − t−

1
2 )E

)}k−1

]

= ∆D(T)(t)
n

∑
k=1
{∆D(T+)(t)}

n−k{∆D(T−)(t)}
k−1.

In general, the determinant of D(Tn) cannot be calculated by using Theorem 6 because
|det(A + B)| 6= |det A| + |det B|. But we can calculate the determinant of D(Tn) under
certain conditions.

Theorem 7. Let L be a periodic link of order n (n ≥ 2) with the factor link L∗. Suppose that L = D(Tn) and
L∗ = D(T) for a 4-tangle T in Case III. If (−1)m+1∆D(T+)(−1) · ∆D(T−)(−1) ≥ 0, then

det(D(Tn)) = det(D(T))
n

∑
k=1
{det(D(T+))}n−k {det(D(T−))}k−1 ,

where m is the size of a Seifert matrix of D(T).

Proof. Notice that, ∆L(−1) = im det(M + MT) for a Seifert matrix Mm×m of a link L.

From the definition of the determinant of a link, Theorem 2 and Lemma 2, if the Seifert matrix
MD(T) of D(T) is an m×m matrix and (−1)m+1∆D(T+)(−1) · ∆D(T−)(−1) ≥ 0, then the determinant
of D(Tn) is

|det((−1)
1
2 MD(T) − (−1)−

1
2 MD(T)

T)

×
n

∑
k=1

[

{
det

(
(−1)

1
2 MD(T) − (−1)−

1
2 MD(T)

T (−1)
1
2 B− (−1)−

1
2 CT

(−1)
1
2 C− (−1)−

1
2 BT ((−1)

1
2 − (−1)−

1
2 )D

)}n−k

×
{(

(−1)
1
2 MD(T) − (−1)−

1
2 MD(T)

T (−1)
1
2 B− (−1)−

1
2 CT

(−1)
1
2 C− (−1)−

1
2 BT ((−1)

1
2 − (−1)−

1
2 )E

)}k−1

]|

= |∆D(T)(−1)| × |
n

∑
k=1
{∆D(T+)(−1)}n−k{∆D(T−1)

(−1)}k−1|

= |∆D(T)(−1)| × |
n

∑
k=1
{im+1 det(MD(T+) + MD(T+)

T)}n−k{im+1 det(MD(T−) + MD(T−)
T)}k−1|

= |∆D(T)(−1)| × |
n

∑
k=1
{det(MD(T+) + MD(T+)

T)}n−k{det(MD(T−) + MD(T−)
T)}k−1|

=

(1)
|∆D(T)(−1)|

n

∑
k=1
|det(MD(T+) + MD(T+)

T)|n−k|det(MD(T−) + MD(T−)
T)|k−1

= det(D(T))
n

∑
k=1
{det(D(T+))}n−k {det(D(T−))}k−1 .
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The identity (1) comes by the condition (−1)m+1∆D(T+)(−1) · ∆D(T−)(−1) ≥ 0 because

det(MD(T+) + MD(T+)
T)det(MD(T−) + MD(T−)

T) ≥ 0

⇔ (i)−(m+1)∆D(T+)(−1) · (i)−(m+1)∆D(T−)(−1) ≥ 0

⇔ (−1)m+1∆D(T+)(−1) · ∆D(T−)(−1) ≥ 0.

Example 2. Consider the oriented 4-tangle T in Figure 15, which is a 4-tangle in Case III.

T D(T)

D(T
+

 

) D(T
-

 

) D(Tn)

Figure 15. Example for Case III.

The Seifert matrices of D(T), D(T+) and D(T−) are given by

MD(T) =

 1 0 0 0
−1 1 0 0
−1 0 1 0

0 0 1 1

, MD(T+) =


1 0 0 0 0
−1 1 0 0 1
−1 0 1 0 1

0 0 1 1 1
0 0 0 0 0

 and MD(T−) =


1 0 0 0 0
−1 1 0 0 1
−1 0 1 0 1

0 0 1 1 1
0 0 0 0 1

,

while

MD(T3) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 −1 −1
−1 0 1 0 0 0 0 0 0 0 0 0 −1 −1

0 0 1 1 0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 −1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1



.
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By direct calculation, one can see that the Alexander polynomials of D(T), D(T+) and D(T−) are

∆D(T)(t) = t2 − t + 1− t−1 + t−2,

∆D(T+)(t) = 2t
3
2 − 3t

1
2 + 3t−

1
2 − 2t−

3
2 and

∆D(T−)(t) = t
5
2 − t

1
2 + t−

1
2 − t−

5
2 .

By using Theorem 6, we get the Alexander polynomial of D(T3);

(t2 − t + 1− t−1 + t−2){(2t
3
2 − 3t

1
2 + 3t−

1
2 − 2t−

3
2 )2

+(2t
3
2 − 3t

1
2 + 3t−

1
2 − 2t−

3
2 )(t

5
2 − t

1
2 + t−

1
2 − t−

5
2 ) + (t

5
2 − t

1
2 + t−

1
2 − t−

5
2 )2}

= t7 + t6 + 4t5 − 19t4 + 38t3 − 61t2 + 82t− 92 + 82t−1 − 61t−2 + 38t−3

−19t−4 + 4t−5 + t−6 + t−7.

Remark 2. In Theorem 7, the condition (−1)m+1∆D(T+)(−1) · ∆D(T−)(−1) ≥ 0 is essential. Consider the
oriented 4-tangle T in Figure 15, which is a 4-tangle in Case III. By direct calculation, one can see that the
determinant of D(T3) = 500. The result is the same with det(D(T3)) = 5{(−10)2 + (−10)(0) + (0)2}
in Theorem 7. We can easily check this example satisfies the condition. Consider the oriented 4-tangle T in
Figure 16, which is a 4-tangle in Case III.

T D(T)

D(T
+

 

)
D(T

-

 

)

D(T
3

)

Figure 16. (−1)3∆D(T+)(−1)∆D(T−)(−1) = −8.

The Seifert matrices of D(T), D(T+) and D(T−) are given by

MD(T) =

(
−1 −1
0 −1

)
, MD(T+) =

 −1 −1 −1
0 −1 −1
0 0 −1

 and MD(T−) =

 −1 −1 −1
0 −1 −1
0 0 0

 ,

while

MD(T3) =



−1 −1 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 −1 −1 0 0 −1 0
0 0 0 1 0 0 −1 0
0 0 0 0 −1 −1 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 −1


.
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By direct calculation, one can see that the Alexander polynomials of D(T), D(T+) and D(T−) are

∆D(T)(t) = t−1 − 1 + t,

∆D(T+)(t) = t−
3
2 − t−

1
2 + t

1
2 − t

3
2 and

∆D(T−)(t) = t−
1
2 − t

1
2 .

By using Theorem 6, we get the Alexander polynomial of D(T3);

(t−1 − 1 + t){(t−
3
2 − t−

1
2 + t

1
2 − t

3
2 )2+(t−

3
2 − t−

1
2 + t

1
2 − t

3
2 )(t−

1
2 − t

1
2 ) + (t−

1
2 − t

1
2 )2}

= t4 − 2t3 + 4t2 − 7t + 8− 7t−1 + 4t−2 − 2t−3 + t−4.

Finally, one can see that det(D(T3)) = 9 by direct calculation. The result is not equal
to det(D(T)){det(D(T+))2 + det(D(T+)det(D(T−) + det(D(T−))2} = 3{(4)2 + (4)2 + 22} since
det(D(T)) = 3, det(D(T+)) = 4 and det(D(T−)) = 2. We can check that this example doesn’t satisfy the
condition since (−1)3∆D(T+)(−1)∆D(T−)(−1) = −(4i)(−2i) = −8 < 0.
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Appendix A

Proof of Theorem 1.

LHS =

(1)
det



A O O · · · O −B −B · · · −B
O A O · · · O 2B B · · · B
O O A · · · O B 2B · · · B
...

...
...

. . .
...

...
...

. . .
...

O O O · · · A B B · · · 2B
O C O · · · O 2D D · · · D
O O C · · · O D 2D · · · D
...

...
...

. . .
...

...
...

. . .
...

O O O · · · C D D · · · 2D



=

(2)
det(A)det



A O · · · O 2B B · · · nB
O A · · · O B 2B · · · nB
...

...
. . .

...
...

...
. . .

...
O O · · · A B B · · · nB
C O · · · O 2D D · · · nD
O C · · · O D 2D · · · nD
...

...
. . .

...
...

...
. . .

...
O O · · · C D D · · · nD



=

(3)
nr det(A)det



A O · · · O 2B B · · · B
O A · · · O B 2B · · · B
...

...
. . .

...
...

...
. . .

...
O O · · · A B B · · · B
C O · · · O 2D D · · · D
O C · · · O D 2D · · · D
...

...
. . .

...
...

...
. . .

...
O O · · · C D D · · · D
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=

(4)
nr det(A)det



A O · · · O B O · · · B
O A · · · O O B · · · B
...

...
. . .

...
...

...
. . .

...
O O · · · A O O · · · B
C O · · · O D O · · · D
O C · · · O O D · · · D
...

...
. . .

...
...

...
. . .

...
O O · · · C O O · · · D



=

(5)
nr det(A)det



A O · · · O B O · · · O
O A · · · O O B · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · A O O · · · B
C O · · · O D O · · · O
O C · · · O O D · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · C O O · · · D


= nr det(A)

{
det

(
A B
C D

)}n−1

.

The reasons for the identities (1)–(5) are the following;

(1) Add the kth column to the first column and then, add (−1)(the first row) to the kth row for any
k = 2, 3, · · · , n.

(2) Add the kth column to the last column for any k = n, n + 1, · · · , 2n− 3.
(3) B and D are an m× r and an r× r matrices, respectively.
(4) Add (−1)(the last column) to the kth column for any k = n, n + 1, · · · , 2n− 3.
(5) Add (−1)(the kth column) to the last column for any k = n, n + 1, · · · , 2n− 3.

It is the end of the proof of Theorem 1.

Proof of Theorem 2. To prove

det



A O · · · O 2B B · · · B
O A · · · O B 2B · · · B
...

...
. . .

...
...

...
. . .

...
O O · · · A B B · · · 2B
C O · · · O D + E D · · · D
O C · · · O E D + E · · · D
...

...
. . .

...
...

...
. . .

...
O O · · · C E E · · · D + E


=

n

∑
k=1

{
det

(
A B
C D

)}n−k {
det

(
A B
C E

)}k−1

,

where the number of A’s and the number of (D + E)’s in the diagonal are n − 1 (n ≥ 2),
we proceed by the mathematical induction on n, the number of block A. It is clear that

det

(
A 2B
C D + E

)
= det

(
A B
C D

)
+ det

(
A B
C E

)
.
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Assume that the formula is true for n− 2 (n ≥ 3). It is well-known that the determinant can be
obtained by adding the determinants of the following two matrices.

A O · · · O O 2B B · · · B B
O A · · · O O B 2B · · · B B
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · A O B B · · · 2B B
O O · · · O A B B · · · B B
C O · · · O O D + E D · · · D D
O C · · · O O E D + E · · · D D
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · C O E E · · · D + E D
O O · · · O C E E · · · E D


and 

A O · · · O O 2B B · · · B O
O A · · · O O B 2B · · · B O
...

...
. . .

...
...

...
...

. . .
...

O O · · · A O B B · · · 2B O
O O · · · O A B B · · · B B
C O · · · O O D + E D · · · D O
O C · · · O O E D + E · · · D O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · C O E E · · · D + E O
O O · · · O C E E · · · E E


By simple calculation, one can calculate their determinants. Indeed, the determinant of the first

matrix (I) is

(I) =

(1)
det



A O · · · O −A B O · · · O O
O A · · · O −A O B · · · O O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · A −A O O · · · B O
O O · · · O A B B · · · B B
C O · · · O −C D D− E · · · D− E O
O C · · · O −C O D · · · D− E O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · C −C O O · · · D O
O O · · · O C E E · · · E D



=

(2)
det



A O · · · O O B O · · · O O
O A · · · O O O B · · · O O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · A O O O · · · B O
O O · · · O A O O · · · O B
C O · · · O O D D− E · · · D− E O
O C · · · O O O D · · · D− E O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · C O O O · · · D O
O O · · · O C E− D E− D · · · E− D D
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= det
(

A B
C D

)
det



A O · · · O B O · · · O
O A · · · O O B · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · A O O · · · B
C O · · · O D D− E · · · D− E
O C · · · O O D · · · D− E
...

...
. . .

...
...

...
. . .

...
O O · · · C O O · · · D



=

(3)

{
det

(
A B
C D

)}n−1
,

while the determinant of the second matrix (II) is

(II) =

(4)
det



A O · · · O O 2B B · · · B O
O A · · · O O B 2B · · · B O
...

...
. . .

...
...

...
...

. . .
...

O O · · · A O B B · · · 2B O
O O · · · O A O O · · · O B
C O · · · O O D + E D · · · D O
O C · · · O O E D + E · · · D O
...

...
. . .

...
...

...
...

. . .
...

...
O O · · · C O E E · · · D + E O
O O · · · O C O O · · · O E



= det
(

A B
C E

)
det



A O · · · O 2B B · · · B
O A · · · O B 2B · · · B
...

...
. . .

...
...

...
. . .

...
O O · · · A B B · · · 2B
C O · · · O D + E D · · · D
O C · · · O E D + E · · · D
...

...
. . .

...
...

...
. . .

...
O O · · · C E E · · · D + E


= det

(
A B
C E

) n−1

∑
k=1

{
det

(
A B
C D

)}n−1−k {
det

(
A B
C E

)}k−1
.

The reasons for the identities (1)–(4) are the following;

(1) Add (−1){the (n− 1)th row} to the kth row for any k = 1, 2, · · · , n − 2, and then, add
(−1){the (2n− 2)th row} to the kth row for any k = n, n + 1, · · · , 2n− 3.

(2) Add the kth column to the (n− 1)th column for any k = 1, 2, · · · , n− 2, and then, add (−1){the
(2n− 2)th column} to the kth column for any k = n, n + 1, · · · , 2n− 3.

(3) Apply the following identity repeatedly.

det



A O · · · O B O · · · O
O A · · · O O B · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · A O O · · · B
C O · · · O D D− E · · · D− E
O C · · · O O D · · · D− E
...

...
. . .

...
...

...
. . .

...
O O · · · C O O · · · D
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= det
(

A B
C D

)
det



A O · · · O B O · · · O
O A · · · O O B · · · O
...

...
. . .

...
...

...
. . .

...
O O · · · A O O · · · B
C O · · · O D D− E · · · D− E
O C · · · O O D · · · D− E
...

...
. . .

...
...

...
. . .

...
O O · · · C O O · · · D


.

(4) Add (−1){the (2n− 2)th column} to the kth column for any k = n, n + 1, · · · , 2n− 3.

Therefore the determinant of our matrix is given by

n

∑
k=1

{
det

(
A B
C D

)}n−k {
det

(
A B
C E

)}k−1

.

By using this result, we can prove Theorem 2.

Appendix B

The following proofs use more sophisticated matrix theory tools and henceforth are more compact.
We assume that A is invertible so that the Schur complement can be defined. However this is only a
technical assumption: in fact, looking at the final formula in Theorem 1, this depends with continuity
with respect to the entries of A (and in particular with respect to det(A)) and therefore if the statement
holds for det(A) different from zero, then it must be true also when det(A) = 0 and the reason is that
the set of invertible matrices is dense in the set of all matrices (see [19]).

Two preliminary things are needed. The first is the Schur complement (see [20] and references

therein) of a block matrix X =

(
A1,1 A1,2

A2,1 A2,2

)
which corresponds at a single block step of the

Gaussian Elimination so that the determinant of X is equal to

det(A1,1)det(S), S = A2,2 − A2,1 A−1
1,1 A1,2. (A1)

The second is the tensor product [19] of square matrices Y, X so that

det(Y⊗ Z) = {det(Y)}v {det(Z)}u , (A2)

where Y is square of size u and Z is square of size v.
Now we are ready to prove Theorem 1. First we observe that A1,1 = In × A so that by (A2) we

have det(A1,1) = {det(A)}n. Second we compute the Schur complement S according to (A1) and
we find

S = (In−1 + eeT)⊗ (D− CA−1B)

with eT = (1, . . . , 1) vector of all ones of size n− 1. Now D − CA−1B is the Schur complement of(
A B
C D

)
and hence by the first part of (A1) we have det

(
A B
C D

)
= det(A)det(D− CA−1B).

The matrix eeT has rank 1 and hence it has n− 2 eigenvalues equal to zero and one coinciding with the
trace, that is n− 1: hence the matrix In−1 + eeT has eigenvalue 1 with multiplicity n− 2 and eigenvalue
n with multiplicity 1 so that its determinant is n

det(S) =
{

det(In−1 + eeT)
}r {

det(D− CA−1B)
}n−1

= nr

{
det

(
A B
C D

)}n−1

{det(A)}1−n
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so that, by putting together the latter relation and det(A1,1) = {det(A)}n, we obtain

det(X) = det

(
A1,1 A1,2

A2,1 A2,2

)
= nr det(A)

{
det

(
A B
C D

)}n−1

and Theorem 1 is proved.
With the very same tools and by following the same steps, Theorem 2 can be proven as well.

References

1. Howard, A. Elementary Linear Algebra; John Wiley & Sons: New York, NY, USA, 1994.
2. Bae, Y.; Lee, I.S. On Alexander polynomial of periodic links. J. Knot Theory Ramif. 2011, 20, 749–761.
3. Banks, J.E. Homogeneous links, Seifert surfaces, digraphs and the reduced Alexander polynomial.

Geom. Dedicata 2013, 166, 67–98.
4. Cromwell, P. Knots and Links; Cambridge University Press: Cambridge, UK, 2004.
5. Kawauchi, A. A Survey of Knot Theory; Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA, 1996.
6. Bae, Y.; Lee, I.S. On Seifert matrices of symmetric links. Kyungpook Math. J. 2011, 51, 261–281.
7. Alexander, J. Topological invariants for knots and links. Trans. Am. Math. Soc. 1928, 30, 275–306.
8. Kauffman, L.H. Formal Knot Theory; Mathematical Notes, 30; Princeton University Press: Princeton, NJ, USA,

1983.
9. Conway, J. An enumeration of knots and links and some of their algebraic properties. In Proceedings of the

Conference on Computational Problems in Abstract Algebra, Oxford, UK, 29 August–2 September 1967.
10. Hillman, J.A.; Livingston, C.; Naik, S. Twisted Alexander polynomials of periodic knots. Algebr. Geom. Topol.

2006, 6, 145–169.
11. Kitayama, T. Twisted Alexander polynomials and ideal points giving Seifert surfaces. Acta Math. Vietnam.

2014, 39, 567–574 .
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